Self-assembled complexes of biopolymers and charged membranes

Gerard C. L. Wong

Materials Science Dept.,

Physics Dept.,

Bioengineering Dept.,

University of Illinois at Urbana-Champaign

APS Membrane Workshop 2004

Summary

Relation between electrostatic self-assembly and biomineralization

- 'Molecular casting' using DNA-cationic membrane complexes Crystallographic control of 'biomineralized' CdS nanorods
- Control of pore size, shape, & chemistry in biopolymer-membrane systems
 - * 'Design rules' of large-pore lamellar complexes: virus-membrane assembly
 - * Fourier reconstruction of ion locations within virus-membrane complex
- Like-charge attraction and assembly between anionic membranes and anionic polyelectrolytes mediated by divalent ions
 - Structural polymorphism and implications for controlled release

How to crystallize inorganic crystals in soft matter systems?

Solution templating: size and shape control

see for example: Kresge et al., 1992; Braun et al., *1996;* Brinker, 1998

Biomineralization: hierarchical structure & crystallographic orientation

see for example: Addadi & Weiner, 1992; *Biomineralization,* S. Mann, 2002

Inner layer: microlaminate composite of calcium carbonate crystals (aragonite) and proteins with a fracture-toughness 3,000-times greater than crystal alone

Why can't we simply copy Nature?

- It is known that anionic proteins are involved in guiding biomineralization, although many of the relevant proteins have yet not been identified
- Not all the roles for these proteins are known
- Proteins difficult to purify, result in small quantities
- → Study simplified system: examine mineralization behavior of biomolecular templates with structures, charge distributions, phase behavior, and self-assembly characteristics that can be controlled precisely.

DNA-cationic membrane complexes

Raedler, Koltover, Salditt, Safinya Science (1997)

- Synthetic DNA-cationic membrane complexes: originally conceived for non-viral gene therapy
- 1-D lattice of DNA chains intercalated between lipid bilayer sheets
- Inter-DNA spacing can be controlled by membrane charge density (2.5nm-6.5nm)
- Nanoporous system with tunable pore size

Highly compact, self-assembled structure

Polymorphism of DNA-lipid phases

Lamellar (L_{α}) Radler et al., (1997)

Hexagonal (H_I) Krishnaswamy et al., (2003)

Inverted hexagonal (H_{II}) Koltover et al., (1998)

- Tune membrane bending modulus (ex. cosurfactants, etc.)
- Change shape of amphiphilic molecule

Can self-assembled DNA-cationic membrane templates be used to 'direct' crystallization?

- Control not just pore size and shape, but chemical structure and charge distribution on pore walls
- Complementary to amphiphile-based templating

How do DNA-membrane complexes interact with ions?

Organization of ion precursors using DNA-membrane complexes

A DNA-membrane complex originally conceived for gene therapy, with tunable pore sizes

2-D condensation of DNA rods by divalent counterions → confined arrays of metal ions inside nanoporous matrix

Pictures adapted from Rädler J.O. et al, Science (1997) and Koltover I. et al, PNAS (2000).

Components for cationic membrane-DNA complexes

Anionic biopolymer

 λ -phage DNA, calf thymus DNA

2e⁻/ 3.4Å

Cationic lipid (?)

DOTAP

1 positive charge / 70Å²

Neutral lipid ()

DOPC

Cadmium ion Cd²⁺

(precursor to CdS)

Organization of Cd ions in DNA-membrane complex

Control of inter-ion spacing: High membrane charge density

→ fewer Cd²+ ions organized into 2-D DNA-membrane array

Structural evolution of DNA-membrane template during CdS growth

Cd ions confined in DNA-membrane complexes react with H₂S to form CdS nanorods with wurtzite structure

WAXS: structure of templated CdS

SAXS: expansion of DNA lattice during growth of CDS nanorods

Molecular casting of CdS nanorods

- Strong electrostatic interactions align the templated CdS (002) polar planes parallel to the orientation of the negatively charged sugar-phosphate DNA backbone → molecular details of the DNA molecule are imprinted onto the inorganic crystal structure.
- Crystallographic control via biomolecular architecture: Templated nanorods have (002) directions tilted by 60° with respect to the rod axis, in contradistinction to all known templated CdS nanorods

3-D reconstruction of CdS nanorods at atomic level

- Nanodiffraction experiment on single CdS nanorod
- (002) planes tilted by ~60° with respect to the rod axis
- Working on full structure using phase retrieval algorithms

Crystallographic control in biomineralized inorganic nanostructures

 $[Cd^{2+}]=10 \text{ mM}$

DNA-membrane complex: Entropically controlled electrostatic interactions

 $[Cd^{2+}]=40 \text{ mM}$

Organize ions in complex: Replication of DNA charge pattern

[Cd²⁺]=40 mM H₂S reaction

React with H₂S: Crystallographic control of CdS nanostructures

Liang et al., JACS, **125**, 11786-11787 (2003) Liang et al., JACS, in press (2004)

Can we control the pore size and shape within biopolymer-membrane complexes?

Substitute DNA with bigger biopolymer to make bigger pore?

Actin-membrane complexes self-assemble into 'missing-layer' superlattice

Wong et al., Science, 288, 2035-2039 (2000).

- Simple lamellar structure of DNA-membrane complexes suppressed
- Unit cell contains 2 layers of actin and 1 lipid layer
- Actin is close-packed into 2-D layer on either side of membrane
- No longer have sizetunable nanopores between polymers

2-D composite actin-lipid membranes collapses into hierarchically structured tubules

DIC and confocal microscopy: Membrane and actin colocalized. Alexa 488 Green: actin Texas Red: membrane

'Freeze-fracture' EM: 2-D phase-locked lattice of F-actin

Wong et al., Science, 288, 2035-2039 (2000).

Counterion release and surface charge density matching

Self Assembly of Charged Polyelectrolytes and Oppositely Charged Membranes: Driving Force: Entropy gain by release of condensed counterions on both macro-ions

Is it possible to suppress the superlattice structure and maintain big pores?

- M13 virus: Monodisperse rod-like particles (D ~ 6.5nm, ξ_P ~ 2 μ m)
- surface charge density can be 'matched' to typical lipid headgroups
- Similar charge density to actin but at much higher surface charge density

- ~2700 copies of α-helical coat protein
- each coat protein ~45 residues, of which 6 are solvent accessible and contribute to surface charge
- surface charge density tunable

M13 virus – cationic membrane complex

- Simple lamellar structure of DNA-membrane complexes recovered after charge density matching
- Cross-section of nanopore
 10x larger than that of
 DNA-membrane complexes
- Large molecules can be encapsulated

Yang, Liang, Angelini, Butler, Coridan, Tang, & Wong, *Nature materials*, in press (2004).

Organize nanoscopic arrays of dye molecules in complex

Yang, Liang, Angelini, Butler, Coridan, Tang, & Wong, *Nature materials*, in press (2004).